
THE CATHEDRAL AND THE BAZAAR [excerpts] 
 
 
ERIC RAYMOND 
 
 
Linux is subversive. Who would have thought even five years ago (1991) that a world-class operating 
system could coalesce as if by magic out of part-time hacking by several thousand developers scattered all 
over the planet, connected only by the tenuous strands of the Internet? 
 
Certainly not I. By the time Linux swam onto my radar screen in early 1993, I had already been involved in 
Unix and open-source development for ten years. I was one of the first GNU contributors in the mid-1980s. 
I had released a good deal of open-source software onto the net, developing or co-developing several 
programs (nethack, Emacs's VC and GUD modes, xlife, and others) that are still in wide use today. I 
thought I knew how it was done. 
 
Linux overturned much of what I thought I knew. I had been preaching the Unix gospel of small tools, 
rapid prototyping and evolutionary programming for years. But I also believed there was a certain critical 
complexity above which a more centralized, a priori approach was required. I believed that the most 
important software (operating systems and really large tools like the Emacs programming editor) needed to 
be built like cathedrals, carefully crafted by individual wizards or small bands of mages working in 
splendid isolation, with no beta to be released before its time. 
 
Linus Torvalds's style of development—release early and often, delegate everything you can, be open to the 
point of promiscuity—came as a surprise. No quiet, reverent cathedral-building here—rather, the Linux 
community seemed to resemble a great babbling bazaar of differing agendas and approaches (aptly 
symbolized by the Linux archive sites, who'd take submissions from anyone) out of which a coherent and 
stable system could seemingly emerge only by a succession of miracles. 
 
The fact that this bazaar style seemed to work, and work well, came as a distinct shock. As I learned my 
way around, I worked hard not just at individual projects, but also at trying to understand why the Linux 
world not only didn't fly apart in confusion but seemed to go from strength to strength at a speed barely 
imaginable to cathedral-builders. 
 
By mid-1996 I thought I was beginning to understand. Chance handed me a perfect way to test my theory, 
in the form of an open-source project that I could consciously try to run in the bazaar style. So I did—and it 
was a significant success. 
 
This is the story of that project. I'll use it to propose some aphorisms about effective open-source 
development. Not all of these are things I first learned in the Linux world, but we'll see how the Linux 
world gives them particular point. If I'm correct, they'll help you understand exactly what it is that makes 
the Linux community such a fountain of good software—and, perhaps, they will help you become more 
productive yourself. 
 
 
The Mail Must Get Through 
 
Since 1993 I'd been running the technical side of a small free-access Internet service provider called 
Chester County InterLink (CCIL) in West Chester, Pennsylvania. I co-founded CCIL and wrote our unique 
multiuser bulletin-board software—you can check it out by telnetting to locke.ccil.org. Today it supports 
almost three thousand users on thirty lines. The job allowed me 24-hour-a-day access to the net through 
CCIL's 56K line—in fact, the job practically demanded it! 
 
I had gotten quite used to instant Internet email. I found having to periodically telnet over to locke to check 
my mail annoying. What I wanted was for my mail to be delivered on snark (my home system) so that I 
would be notified when it arrived and could handle it using all my local tools. 



 
The Internet's native mail forwarding protocol, SMTP (Simple Mail Transfer Protocol), wouldn't suit, 
because it works best when machines are connected full-time, while my personal machine isn't always on 
the Internet, and doesn't have a static IP address. What I needed was a program that would reach out over 
my intermittent dialup connection and pull across my mail to be delivered locally. I knew such things 
existed, and that most of them used a simple application protocol called POP (Post Office Protocol). POP is 
now widely supported by most common mail clients, but at the time, it wasn't built in to the mail reader I 
was using. 
 
I needed a POP3 client. So I went out on the Internet and found one. Actually, I found three or four. I used 
one of them for a while, but it was missing what seemed an obvious feature, the ability to hack the 
addresses on fetched mail so replies would work properly. 
 
The problem was this: suppose someone named `joe' on locke sent me mail. If I fetched the mail to snark 
and then tried to reply to it, my mailer would cheerfully try to ship it to a nonexistent `joe' on snark. Hand-
editing reply addresses to tack on <@ccil.org> quickly got to be a serious pain. 
 
This was clearly something the computer ought to be doing for me. But none of the existing POP clients 
knew how! And this brings us to the first lesson: 
 

1. Every good work of software starts by scratching a developer's personal itch. 
 
Perhaps this should have been obvious (it's long been proverbial that ``Necessity is the mother of 
invention'') but too often software developers spend their days grinding away for pay at programs they 
neither need nor love. But not in the Linux world—which may explain why the average quality of software 
originated in the Linux community is so high. 
 
So, did I immediately launch into a furious whirl of coding up a brand-new POP3 client to compete with 
the existing ones? Not on your life! I looked carefully at the POP utilities I had in hand, asking myself 
``Which one is closest to what I want?'' Because: 
 

2. Good programmers know what to write. Great ones know what to rewrite (and reuse). 
 
While I don't claim to be a great programmer, I try to imitate one. An important trait of the great ones is 
constructive laziness. They know that you get an A not for effort but for results, and that it's almost always 
easier to start from a good partial solution than from nothing at all. 
 
Linus Torvalds, for example, didn't actually try to write Linux from scratch. Instead, he started by reusing 
code and ideas from Minix, a tiny Unix-like operating system for PC clones. Eventually all the Minix code 
went away or was completely rewritten—but while it was there, it provided scaffolding for the infant that 
would eventually become Linux. 
 
In the same spirit, I went looking for an existing POP utility that was reasonably well coded, to use as a 
development base. 
 
The source-sharing tradition of the Unix world has always been friendly to code reuse (this is why the 
GNU project chose Unix as a base OS, in spite of serious reservations about the OS itself). The Linux 
world has taken this tradition nearly to its technological limit; it has terabytes of open sources generally 
available. So spending time looking for some else's almost-good-enough is more likely to give you good 
results in the Linux world than anywhere else. 
 
And it did for me. With those I'd found earlier, my second search made up a total of nine candidates—
fetchpop, PopTart, get-mail, gwpop, pimp, pop-perl, popc, popmail and upop. The one I first settled on was 
`fetchpop' by Seung-Hong Oh. I put my header-rewrite feature in it, and made various other improvements 
which the author accepted into his 1.9 release. 
 



A few weeks later, though, I stumbled across the code for popclient by Carl Harris, and found I had a 
problem. Though fetchpop had some good original ideas in it (such as its background-daemon mode), it 
could only handle POP3 and was rather amateurishly coded (Seung-Hong was at that time a bright but 
inexperienced programmer, and both traits showed). Carl's code was better, quite professional and solid, 
but his program lacked several important and rather tricky-to-implement fetchpop features (including those 
I'd coded myself). 
 
Stay or switch? If I switched, I'd be throwing away the coding I'd already done in exchange for a better 
development base. 
 
A practical motive to switch was the presence of multiple-protocol support. POP3 is the most commonly 
used of the post-office server protocols, but not the only one. Fetchpop and the other competition didn't do 
POP2, RPOP, or APOP, and I was already having vague thoughts of perhaps adding IMAP (Internet 
Message Access Protocol, the most recently designed and most powerful post-office protocol) just for fun. 
 
But I had a more theoretical reason to think switching might be as good an idea as well, something I 
learned long before Linux. 
 

3. ``Plan to throw one away; you will, anyhow.'' (Fred Brooks, The Mythical Man-Month, Chapter 
11) 

 
Or, to put it another way, you often don't really understand the problem until after the first time you 
implement a solution. The second time, maybe you know enough to do it right. So if you want to get it 
right, be ready to start over at least once [JB]. 
 
Well (I told myself) the changes to fetchpop had been my first try. So I switched. 
 
After I sent my first set of popclient patches to Carl Harris on 25 June 1996, I found out that he had 
basically lost interest in popclient some time before. The code was a bit dusty, with minor bugs hanging 
out. I had many changes to make, and we quickly agreed that the logical thing for me to do was take over 
the program. 
 
Without my actually noticing, the project had escalated. No longer was I just contemplating minor patches 
to an existing POP client. I took on maintaining an entire one, and there were ideas bubbling in my head 
that I knew would probably lead to major changes. 
 
In a software culture that encourages code-sharing, this is a natural way for a project to evolve. I was acting 
out this principle: 
 

4. If you have the right attitude, interesting problems will find you. 
 
But Carl Harris's attitude was even more important. He understood that 
 

5. When you lose interest in a program, your last duty to it is to hand it off to a competent 
successor. 

 
Without ever having to discuss it, Carl and I knew we had a common goal of having the best solution out 
there. The only question for either of us was whether I could establish that I was a safe pair of hands. Once 
I did that, he acted with grace and dispatch. I hope I will do as well when it comes my turn. 
 
…. 
 



Necessary Preconditions for the Bazaar Style 
 
Early reviewers and test audiences for this essay consistently raised questions about the preconditions for 
successful bazaar-style development, including both the qualifications of the project leader and the state of 
code at the time one goes public and starts to try to build a co-developer community. 
 
It's fairly clear that one cannot code from the ground up in bazaar style [IN]. One can test, debug and 
improve in bazaar style, but it would be very hard to originate a project in bazaar mode. Linus didn't try it. 
I didn't either. Your nascent developer community needs to have something runnable and testable to play 
with. 
 
When you start community-building, what you need to be able to present is a plausible promise. Your 
program doesn't have to work particularly well. It can be crude, buggy, incomplete, and poorly 
documented. What it must not fail to do is (a) run, and (b) convince potential co-developers that it can be 
evolved into something really neat in the foreseeable future. 
 
Linux and fetchmail both went public with strong, attractive basic designs. Many people thinking about the 
bazaar model as I have presented it have correctly considered this critical, then jumped from that to the 
conclusion that a high degree of design intuition and cleverness in the project leader is indispensable. 
 
But Linus got his design from Unix. I got mine initially from the ancestral popclient (though it would later 
change a great deal, much more proportionately speaking than has Linux). So does the leader/coordinator 
for a bazaar-style effort really have to have exceptional design talent, or can he get by through leveraging 
the design talent of others? 
 
I think it is not critical that the coordinator be able to originate designs of exceptional brilliance, but it is 
absolutely critical that the coordinator be able to recognize good design ideas from others. 
 
Both the Linux and fetchmail projects show evidence of this. Linus, while not (as previously discussed) a 
spectacularly original designer, has displayed a powerful knack for recognizing good design and integrating 
it into the Linux kernel. And I have already described how the single most powerful design idea in 
fetchmail (SMTP forwarding) came from somebody else. 
 
Early audiences of this essay complimented me by suggesting that I am prone to undervalue design 
originality in bazaar projects because I have a lot of it myself, and therefore take it for granted. There may 
be some truth to this; design (as opposed to coding or debugging) is certainly my strongest skill. 
 
But the problem with being clever and original in software design is that it gets to be a habit—you start 
reflexively making things cute and complicated when you should be keeping them robust and simple. I 
have had projects crash on me because I made this mistake, but I managed to avoid this with fetchmail. 
 
So I believe the fetchmail project succeeded partly because I restrained my tendency to be clever; this 
argues (at least) against design originality being essential for successful bazaar projects. And consider 
Linux. Suppose Linus Torvalds had been trying to pull off fundamental innovations in operating system 
design during the development; does it seem at all likely that the resulting kernel would be as stable and 
successful as what we have? 
 
A certain base level of design and coding skill is required, of course, but I expect almost anybody seriously 
thinking of launching a bazaar effort will already be above that minimum. The open-source community's 
internal market in reputation exerts subtle pressure on people not to launch development efforts they're not 
competent to follow through on. So far this seems to have worked pretty well. 
 
There is another kind of skill not normally associated with software development which I think is as 
important as design cleverness to bazaar projects—and it may be more important. A bazaar project 
coordinator or leader must have good people and communications skills. 
 



This should be obvious. In order to build a development community, you need to attract people, interest 
them in what you're doing, and keep them happy about the amount of work they're doing. Technical sizzle 
will go a long way towards accomplishing this, but it's far from the whole story. The personality you 
project matters, too. 
 
It is not a coincidence that Linus is a nice guy who makes people like him and want to help him. It's not a 
coincidence that I'm an energetic extrovert who enjoys working a crowd and has some of the delivery and 
instincts of a stand-up comic. To make the bazaar model work, it helps enormously if you have at least a 
little skill at charming people. 
 
 
The Social Context of Open-Source Software 
 
It is truly written: the best hacks start out as personal solutions to the author's everyday problems, and 
spread because the problem turns out to be typical for a large class of users. This takes us back to the matter 
of rule 1, restated in a perhaps more useful way: 
 

18. To solve an interesting problem, start by finding a problem that is interesting to you. 
 
So it was with Carl Harris and the ancestral popclient, and so with me and fetchmail. But this has been 
understood for a long time. The interesting point, the point that the histories of Linux and fetchmail seem to 
demand we focus on, is the next stage—the evolution of software in the presence of a large and active 
community of users and co-developers. 
 
In The Mythical Man-Month, Fred Brooks observed that programmer time is not fungible; adding 
developers to a late software project makes it later. As we've seen previously, he argued that the complexity 
and communication costs of a project rise with the square of the number of developers, while work done 
only rises linearly. Brooks's Law has been widely regarded as a truism. But we've examined in this essay an 
number of ways in which the process of open-source development falsifies the assumptionms behind it—
and, empirically, if Brooks's Law were the whole picture Linux would be impossible. 
 
Gerald Weinberg's classic The Psychology of Computer Programming supplied what, in hindsight, we can 
see as a vital correction to Brooks. In his discussion of ``egoless programming'', Weinberg observed that in 
shops where developers are not territorial about their code, and encourage other people to look for bugs and 
potential improvements in it, improvement happens dramatically faster than elsewhere. (Recently, Kent 
Beck's `extreme programming' technique of deploying coders in pairs looking over one anothers' shoulders 
might be seen as an attempt to force this effect.) 
 
Weinberg's choice of terminology has perhaps prevented his analysis from gaining the acceptance it 
deserved—one has to smile at the thought of describing Internet hackers as ``egoless''. But I think his 
argument looks more compelling today than ever. 
 
The bazaar method, by harnessing the full power of the ``egoless programming'' effect, strongly mitigates 
the effect of Brooks's Law. The principle behind Brooks's Law is not repealed, but given a large developer 
population and cheap communications its effects can be swamped by competing nonlinearities that are not 
otherwise visible. This resembles the relationship between Newtonian and Einsteinian physics—the older 
system is still valid at low energies, but if you push mass and velocity high enough you get surprises like 
nuclear explosions or Linux. 
 
The history of Unix should have prepared us for what we're learning from Linux (and what I've verified 
experimentally on a smaller scale by deliberately copying Linus's methods [EGCS]). That is, while coding 
remains an essentially solitary activity, the really great hacks come from harnessing the attention and 
brainpower of entire communities. The developer who uses only his or her own brain in a closed project is 
going to fall behind the developer who knows how to create an open, evolutionary context in which 
feedback exploring the design space, code contributions, bug-spotting, and other improvements come from 
from hundreds (perhaps thousands) of people. 



 
But the traditional Unix world was prevented from pushing this approach to the ultimate by several factors. 
One was the legal contraints of various licenses, trade secrets, and commercial interests. Another (in 
hindsight) was that the Internet wasn't yet good enough. 
 
Before cheap Internet, there were some geographically compact communities where the culture encouraged 
Weinberg's ``egoless'' programming, and a developer could easily attract a lot of skilled kibitzers and co-
developers. Bell Labs, the MIT AI and LCS labs, UC Berkeley—these became the home of innovations 
that are legendary and still potent. 
 
Linux was the first project for which a conscious and successful effort to use the entire world as its talent 
pool was made. I don't think it's a coincidence that the gestation period of Linux coincided with the birth of 
the World Wide Web, and that Linux left its infancy during the same period in 1993–1994 that saw the 
takeoff of the ISP industry and the explosion of mainstream interest in the Internet. Linus was the first 
person who learned how to play by the new rules that pervasive Internet access made possible. 
 
While cheap Internet was a necessary condition for the Linux model to evolve, I think it was not by itself a 
sufficient condition. Another vital factor was the development of a leadership style and set of cooperative 
customs that could allow developers to attract co-developers and get maximum leverage out of the medium. 
 
But what is this leadership style and what are these customs? They cannot be based on power 
relationships—and even if they could be, leadership by coercion would not produce the results we see. 
Weinberg quotes the autobiography of the 19th-century Russian anarchist Pyotr Alexeyvich Kropotkin's 
Memoirs of a Revolutionist to good effect on this subject: 
 
Having been brought up in a serf-owner's family, I entered active life, like all young men of my time, with 
a great deal of confidence in the necessity of commanding, ordering, scolding, punishing and the like. But 
when, at an early stage, I had to manage serious enterprises and to deal with [free] men, and when each 
mistake would lead at once to heavy consequences, I began to appreciate the difference between acting on 
the principle of command and discipline and acting on the principle of common understanding. The former 
works admirably in a military parade, but it is worth nothing where real life is concerned, and the aim can 
be achieved only through the severe effort of many converging wills. 
 
The ``severe effort of many converging wills'' is precisely what a project like Linux requires—and the 
``principle of command'' is effectively impossible to apply among volunteers in the anarchist's paradise we 
call the Internet. To operate and compete effectively, hackers who want to lead collaborative projects have 
to learn how to recruit and energize effective communities of interest in the mode vaguely suggested by 
Kropotkin's ``principle of understanding''. They must learn to use Linus's Law.[SP] 
 
Earlier I referred to the ``Delphi effect'' as a possible explanation for Linus's Law. But more powerful 
analogies to adaptive systems in biology and economics also irresistably suggest themselves. The Linux 
world behaves in many respects like a free market or an ecology, a collection of selfish agents attempting to 
maximize utility which in the process produces a self-correcting spontaneous order more elaborate and 
efficient than any amount of central planning could have achieved. Here, then, is the place to seek the 
``principle of understanding''. 
 
The ``utility function'' Linux hackers are maximizing is not classically economic, but is the intangible of 
their own ego satisfaction and reputation among other hackers. (One may call their motivation ``altruistic'', 
but this ignores the fact that altruism is itself a form of ego satisfaction for the altruist). Voluntary cultures 
that work this way are not actually uncommon; one other in which I have long participated is science 
fiction fandom, which unlike hackerdom has long explicitly recognized ``egoboo'' (ego-boosting, or the 
enhancement of one's reputation among other fans) as the basic drive behind volunteer activity. 
 
Linus, by successfully positioning himself as the gatekeeper of a project in which the development is 
mostly done by others, and nurturing interest in the project until it became self-sustaining, has shown an 



acute grasp of Kropotkin's ``principle of shared understanding''. This quasi-economic view of the Linux 
world enables us to see how that understanding is applied. 
 
We may view Linus's method as a way to create an efficient market in ``egoboo''—to connect the 
selfishness of individual hackers as firmly as possible to difficult ends that can only be achieved by 
sustained cooperation. With the fetchmail project I have shown (albeit on a smaller scale) that his methods 
can be duplicated with good results. Perhaps I have even done it a bit more consciously and systematically 
than he. 
 
Many people (especially those who politically distrust free markets) would expect a culture of self-directed 
egoists to be fragmented, territorial, wasteful, secretive, and hostile. But this expectation is clearly falsified 
by (to give just one example) the stunning variety, quality, and depth of Linux documentation. It is a 
hallowed given that programmers hate documenting; how is it, then, that Linux hackers generate so much 
documentation? Evidently Linux's free market in egoboo works better to produce virtuous, other-directed 
behavior than the massively-funded documentation shops of commercial software producers. 
 
Both the fetchmail and Linux kernel projects show that by properly rewarding the egos of many other 
hackers, a strong developer/coordinator can use the Internet to capture the benefits of having lots of co-
developers without having a project collapse into a chaotic mess. So to Brooks's Law I counter-propose the 
following: 
 

19: Provided the development coordinator has a communications medium at least as good as the 
Internet, and knows how to lead without coercion, many heads are inevitably better than one. 

 
I think the future of open-source software will increasingly belong to people who know how to play Linus's 
game, people who leave behind the cathedral and embrace the bazaar. This is not to say that individual 
vision and brilliance will no longer matter; rather, I think that the cutting edge of open-source software will 
belong to people who start from individual vision and brilliance, then amplify it through the effective 
construction of voluntary communities of interest. 
 
Perhaps this is not only the future of open-source software. No closed-source developer can match the pool 
of talent the Linux community can bring to bear on a problem. Very few could afford even to hire the more 
than 200 (1999: 600, 2000: 800) people who have contributed to fetchmail! 
 
Perhaps in the end the open-source culture will triumph not because cooperation is morally right or 
software ``hoarding'' is morally wrong (assuming you believe the latter, which neither Linus nor I do), but 
simply because the closed-source world cannot win an evolutionary arms race with open-source 
communities that can put orders of magnitude more skilled time into a problem. 


